
Programming Style Guides and
Coding Standards

• A programming style guide is an
opinionated guide of programming
conventions, style, and best practices for
a team or project.

• A team following a style guide helps
everyone write code in a consistent way,
and consistent code is easier to read and
faster to update.

• Consistent code is easier to read and
understand making it faster to add new
features.

 Widely accepted style guides that you
should consider to start with:

•Google’s Style Guides
•JavaScript Standard Style
•GitHub’s Ruby Style Guide
•Python Foundation’s Style Guide
•Airbnb’s JavaScript Style Guide
•Angular’s Style Guide

• Implementing one of these generally
accepted style guides is a good start to
helping your team write code
consistently.

• Make your style guide easy to reference.
• Style guide acts as a basic code

blueprint for your team during all parts
of the software development lifecycle.

• To keep relevant, it should be often
discussed. Such as during a developers
onboarding, when writing code, when
writing tests, and during code review.

Literature Programming

• It is a methodology that combines a
programming language with a
documentation language, thereby
making programs more robust, more
portable, more easily maintained, and
arguably more fun to write than
programs that are written only in a
high-level language.

• The main idea is to treat a program as a
piece of literature, addressed to human
beings rather than to a computer.

• The program is also viewed as a
hypertext document, rather like the
World Wide Web.

Software documentation
• Software documentation is a part of any

software. Appropriate details and description
need to be in the documented to achieve the
following goals:
 • Resolve issue encountered by the
developer during the development process
 • Help end-user to understand the product
 • Assist customers and the support team to
find the information.

Javadoc
• JavaDoc tool is a document generator

tool in Java programming language for
generating standard documentation in
HTML format.

• It generates API documentation.

• Before using JavaDoc tool, you must
include JavaDoc comments
/**………………..*/ providing information
about classes, methods, and
constructors, etc.

• For creating a good and understandable
document API for any java file you must
write better comments for every class,
method, constructor.

• The JavaDoc comments is different from the
normal comments because of the extra
asterisk at the beginning of the comment. It
may contain the HTML tags as well.

// Single-Line Comment
 /*
Multiple-Line comment
*/
/**
JavaDoc comment
*/

• By writing a number of comments,
it does not affect the performance of
the Java program as all the comments
are removed at compile time.

Generation of JavaDoc
 To create a JavaDoc you do not need to

compile the java file. To create the Java
documentation API, you need to write Javadoc
followed by file name.

 javadoc file_name or javadoc package_name
 After successful execution of the above

command, a number of HTML files will be
created, open the file named index to see all
the information about classes.

phpDocumentor
• phpDocumentor is an application that is

capable of analyzing your PHP source code
and DocBlock comments to generate a
complete set of API Documentation.

phpDocumentor v3 (Stable)
• v3 is the latest stable release.
• The easiest way to run phpDocumentor is by

running the following command:
$ phpdoc run -d <SOURCE_DIRECTORY> -t

<TARGET_DIRECTORY>

VERSION CONTROL
SYSTEMS BASIC

CONCEPTS

Version Control System
• Version Control System (VCS) is a software

that helps software developers to work
together and maintain a complete history of
their work.

• Listed below are the functions of a VCS −
–Allows developers to work

simultaneously.
–Does not allow overwriting each other’s

changes.
–Maintains a history of every version.

• Following are the types of VCS −
–Centralized version control system

(CVCS).
–Distributed/Decentralized version

control system (DVCS).

VCS

CVCS DVCS

• Linux development developed their own tool.
Some of the goals of the new system were as
follows:

• Speed
• Simple design
• Strong support for non-linear

development
• Fully distributed
• Able to handle large projects like the

Linux kernel efficiently

• Git thinks of its data more like a series of
snapshots of a miniature file system.

• Every time when committing, or saving the
state of project, Git basically takes a picture of
what all files look like at that moment and
stores a reference to that snapshot.

• If files have not changed, Git doesn’t store the
file again, just a link to the previous identical
file it has already stored.

• Git thinks about its data more like a stream of
snapshots.

Storing data as snapshots of the
project over time

Git Has Integrity
• Everything in Git is check summed before it is

stored and is then referred to by that
checksum.

• It’s impossible to change the contents of any
file or directory without Git knowing about it.

• This functionality is built into Git at the lowest
levels and is integral to its philosophy.

• Information is not lost in transit or get file
corruption without Git being able to detect it.

• The mechanism that Git uses for this
checksumming is called a SHA-1 hash.

• This is a 40-character string composed of
hexadecimal characters (0–9 and a–f) and
calculated based on the contents of a file or
directory structure in Git.

• Git stores everything in its database not by file
name but by the hash value of its contents.

• A SHA-1 hash looks something like this:

Git Generally Only Adds Data
• When action is done in Git,it only add

data to the Git database. It is hard to get
the system to do anything that is not
undoable or to make it erase data in any
way.

• But after committing a snapshot into Git,
it is very difficult to lose, especially if
database is pushed to another
repository.

The Three States
• Git has three main states that your files can

reside in: modified,staged, and committed:
• Modified means that you have changed the

file but have not committed it to your
database yet.

• Staged means that you have marked a
modified file in its current version to go into
your next commit snapshot.

• Committed means that the data is safely
stored in your local database.

 This leads us to the three main sections of a
Git project: the working tree, the staging area,
and the Git directory.

• The working tree is a single checkout of one
version of the project. These files are pulled
out of the compressed database in the Git
directory and placed on disk for you to use or
modify.

• The staging area is a file, generally contained
in your Git directory, that stores information
about what will go into your next commit. Its
technical name in Git parlance is the “index”,
but the phrase “staging area” works just as
well.

• The Git directory is where Git stores the
metadata and object database for your
project. This is the most important part of
Git, and it is what is copied when you clone a
repository from another computer.

• If a particular version of a file is in the Git
directory, it’s considered committed.

• If it has been modified and was added to the
staging area, it is staged.

• If it was changed since it was checked out
but has not been staged, it is modified.

SETTING UP GIT

• Git has a tool called git config that get
and set configuration variables that
control all aspects of how Git looks and
operates.

• These variables can be stored in three
different places:

 1. [path]/etc/gitconfig file
 2. ~/.gitconfig or ~/.config/git/config file
 3. config file in the Git directory

1. [path]/etc/gitconfig file:
• It contains values applied to every user

on the system and all their repositories.
• If the option –system is passed to git

config, it reads and writes from this file
specifically.

• Because this is a system configuration
file, it needs administrative or superuser
privilege to make changes to it.

2. ~/.gitconfig or ~/.config/git/config
file:
• Values specific personally to the

user.
• Git can read and write to this file

specifically by passing the --global
option, and this affects all of the
repositories you work with on your
system.

 3. config file in the Git directory
• It is specific to that single repository.
•Git can be forced to read from and

write to this file with the --local
option, but that is in fact the default.
• You need to be located somewhere

in a Git repository for this option to
work properly.

• On Windows systems, Git looks for the
.gitconfig file in the $HOME directory
(C:\Users\$USER).

• There is also a system-level config file at
C:\Documents and Settings\All
Users\Application Data\Git\config on
Windows XP, and in

• C:\ProgramData\Git\config on Windows Vista
and newer.

• This config file can only be changed by git
config -f <file> as an admin.

1.After installing Git,set your user name and
email address.

2.Configure the default text editor that will be
used when Git needs you to type in a
message. If not configured, Git uses your
system’s default editor.

• By default Git will create a branch called
master when you create a new repository with
git init.

• To set main as the default branch name do:

The Command Line

• Command line is the only place you can run all
Git commands.

• By knowing how to run the command-line
version, we can probably figure out how to
run the GUI version.

Cloning a Git
Repository

 Git repository can be obtained in one of
two ways:
1. You can take a local directory that is

currently not under version control,
and turn it into a Git repository, or

2. You can clone an existing Git
repository from elsewhere.

In either case, you end up with a Git
repository on your local machine,
ready for work.

• Every version of every file for the
history of the project is pulled down
by default when you run git clone.
• In fact, if your server disk gets

corrupted, you can often use nearly
any of the clones on any client to set
the server back to the state it was in
when it was cloned.

• You clone a repository with git clone
<url>.
• For example, if you want to clone

the Git linkable library called libgit2,
you can do so like this:

 $ git clone
https://github.com/libgit2/libgit2

• That creates a directory named
libgit2, initializes a .git directory
inside it, pulls down all the data for
that repository, and checks out a
working copy of the latest version.
• If you go into the new libgit2

directory that was just created, you’ll
see the project files in there, ready
to be worked on or used.

• If you want to clone the repository
into a directory named something
other than libgit2, you can specify
the new directory name as an
additional argument:

• $ git clone https://github.com/libgit2/libgit2
mylibgit

VIEWING THE COMMIT
HISTORY

• After creating several commits, or if
a repository is cloned with an
existing commit history and to look
back to see what has happened. The
most basic and powerful tool to do
this is the git log command.

• When you run git log in this project, you
should get output that looks something like
this:

• By default, with no arguments, git
log lists the commits made in that
repository in reverse chronological
order; that is, the most recent
commits show up first.
• git log lists each commit with its

SHA-1 checksum, the author’s name
and email, the date written, and the
commit message.

•Options -p or --patch shows the
difference (the patch
output)introduced in each commit.
• The number of log entries displayed

can be limited such as using -2 to
show only the last two entries.

$ git log -p -2
commit ca82a6dff817ec66f44342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date: Mon Mar 17 21:52:11 2008 -0700
Change version number

• To see some abbreviated stats for each
commit, you can use the --stat option

• The --stat option prints below each commit
entry a list of modified files, how many files
were changed, and how many lines in those
files were added and removed. It also puts a
summary of the information at the end.

• The option --pretty changes the log
output to formats other than the default.
The oneline value for this option prints
each commit on a single line, which is
useful if you’re looking at a lot of
commits.

• The short, full, and fuller values show the
output in roughly the same format but
with less or more information,
respectively:

• The option format allows you to specify
your own log output format. This is
useful when you’re generating output for
machine parsing because it specify the
format explicitly, you know it won’t
change with updates to Git:

• The time-limiting options such as --since
and --until are very useful.

• For example, this command gets the list
of commits made in the last two weeks:

• The -S option takes a string and shows
only those commits that changed the
number of occurrences of that string.

$ git log -S function_name
• The last really useful option to pass to git

log as a filter is a path. If you specify a
directory or file name, you can limit the
log output to commits that introduced a
change to those files.

$ git log -- path/to/file

GIT BRANCHING

Git Branching
• Branching means you diverge from the main

line of development and continue to do work
without messing with that main line.

• Git branches are incredibly lightweight, making
branching operations nearly instantaneous,
and switching back and forth between
branches is fast.

• Git encourages workflows that branch and
merge often, even multiple times in a day.

• When you make a commit, Git stores a
commit object that contains a pointer to
the snapshot of the content you staged.

• This object also contains the author’s
name and email address, the message
that you typed, and pointers to the
commit or commits that directly came
before this commit :zero parents for the
initial commit, one parent for a normal
commit, and multiple parents for a
commit that results from a merge of two
or more branches.

• Let’s assume that you have a directory
containing three files, and you stage
them all and commit.

• Staging the files computes a checksum
for each one , stores that version of the
file in the Git repository (Git refers to
them as blobs), and adds that checksum
to the staging area:

$ git add README test.rb LICENSE
$ git commit -m 'Initial commit'

• Git repository now contains five objects:
– three blobs (each representing the

contents of one of the three files)
–one tree that lists the contents of the

directory and specifies which file
names are stored as which blobs

–one commit with the pointer to that
root tree and all the commit metadata.

• A branch in Git is simply a lightweight
movable pointer to one of these
commits.

• The default branch name in Git is master.
• As you start making commits, you’re

given a master branch that points to the
last commit you made.

• Every time you commit, the master
branch pointer moves forward
automatically.

Creating a New Branch

• To create a new branch called testing.
• This is done with the git branch

command:
$ git branch testing

• It keeps a special pointer called HEAD.
• In Git, this is a pointer to the local branch

you’re currently on. Its still on master.
• The git branch command only created a new

branch,it didn’t switch to that branch.
• git log command that shows you where the

branch pointers are pointing is called
--decorate.

Switching Branches

• To switch to an existing branch, you
run the git checkout command.
• Let’s switch to the new testing

branch:
$ git checkout testing

• This moves HEAD to point to the
testing branch.

$ vim test.rb
$ git commit -a -m 'made a change'

• testing branch has moved forward, but
master branch still points to the commit
you were on when you ran git checkout
to switch branches. Let’s switch back to
the master branch:

$ git checkout master

$ vim test.rb
$ git commit -a -m 'made other changes'

Push Changes

• When you do actions in Git, nearly all of
them only add data to the Git database.

• As with any VCS, you can lose or mess up
changes you haven’t committed yet, but
after you commit a snapshot into Git, it is
very difficult to lose, especially if you
regularly push your database to another
repository.

Adding Remote Repositories

• The git add command adds content
from the working directory into the
staging area (or “index”)for the next
commit.
•When the git commit command is

run, by default it only looks at this
staging area, so git add is used to
craft what exactly you would like
your next commit snapshot to look
like.

git add
• The git add command adds content

from the working directory into the
staging area (or “index”)for the next
commit.
• When the git commit command is run,

by default it only looks at this staging
area, so git add is used to craft what
exactly you would like your next commit
snapshot to look like.

git diff
• The git diff command is used when you

want to see differences between any two
trees.

• This could be the difference between
your working environment and your
staging area,between your staging area
and your last commit, or between two
commits.

Conflict-resolution

• Git adds standardconflict-resolution
markers to the files that have conflicts,
so you can open them manually
andresolve those conflicts.

• Your file contains a section that looks
something like this:

• This means the version in HEAD is the
top part of that block (everything above
the =======),while the version in your
iss53 branch looks like everything in the
bottom part.

• In order to resolve the conflict, you have
to either choose one side or the other or
merge the contents yourself.

• For instance, you might resolve this
conflict by replacing the entire block with
this:

Software Quality

 WHAT IS QUALITY?

 FOUR DIMENSIONS OF QUALITY

Specification quality

Design quality

Development (software construction) quality

Conformance quality

 To say that a certain product is a quality product implies that the

product is of good quality

 On the other hand, people certainly use the term bad quality to

express their dissatisfaction with the products or services they use

 Therefore, the adjective good is implicitly attached to the word quality

in the minds of most people

 Thus, the word quality connotes good quality to most people,

including technical professionals

 Before attempting a more elaborate definition of quality, let us consider the

various connotations the word invokes, as it means different things in

different sections of society:

1) For a customer or end user of a product, quality connotes defect-free

functioning, reliability, ease of use

2) For a producer of goods, quality connotes conformance of the product to

specifications

3) For a provider of services, quality connotes meeting deadlines and delivery

of service that conforms to customer specifications and standards

4) For government bodies, quality connotes safety and protection of

consumers from fraud

5) For an industry association or standards body, quality connotes

safeguarding the industry’s reputation, protecting the industry from fraud

 The International Organization for Standardization (ISO 9000, second

edition, 2000) defines quality as the degree to which a set of inherent

characteristics fulfills requirements

 Quality can be used with such adjectives as poor, good, or excellent

 This definition contains three key terms: requirements,

characteristics, and degree

 Requirements can be stated by a customer as product specifications

 Characteristics refers to the capability of the deliverable

 The word degree implies that quality is a continuum, beginning with

zero and moving toward, perhaps, infinity

 Quality is an attribute of a product or service provided to consumers

that conforms the best of the available specifications for that product

or service

 It includes making those specifications available to the end user of the

product or service

 The specifications that form the basis of the product or service

provided may have been defined by a government body, an industry

association, or a standards body

 Where such a definition is not available, the provider may define the

specifications

 The result of a product or service that meets the above definition of

quality is that the customer is able to effectively use the product for the

length of its life or enjoy the service fully

 This result further mandates that the provider is responsible for providing

any support that is required by the customer

 Any product or service that meets the requirements of this definition is

rated a “quality product/service”

 Any product or service that does not meet the requirements of this

definition is rated “poor quality”

 Reliability of a product is its capability to function at the defined level of

performance for the duration of its life

 Quality has four dimensions

Specification quality

Design quality

Development (software construction) quality

Conformance quality

 Specifications are the starting point in the journey of providing a

product or service, followed by design and then development

 Conformance quality is ensuring how well that quality is built into

the deliverable at every stage

 Specification quality refers to how well the specifications are defined

for the product or service being provided

 Specifications have no predecessor activity, and all other activities

succeed specifications

 Thus, if the specifications are weak, design will be weak, resulting in

the development and manufacture of an incorrect product, and the

effort spent on ensuring that quality is built in will have been wasted

 Specifications normally should include the following six aspects:

1) Functionality aspects : Specify what functions are to be achieved by the

product or service

2) Capacity aspects : Specify the load the product can carry (such as 250

passengers on a plane or 100 concurrent users for a Web application)

3) Intended use aspects : Specify the need or needs the product or service satisfies

4) Reliability aspects : Specify how long the product can be enjoyed before it

needs maintenance

5) Safety aspects : Specify the threshold levels for ensuring safety to persons and

property from use of the product or service

6) Security aspects : Specify any threats for which the product or service needs to

be prepared

 In the software industry, specifications are referred to as user requirements

 The following are possible scenarios for obtaining user requirements:

1) A business analyst conducts a feasibility study, writes up a report, and

draws up the user requirements. The analyst:

a) Meets with all the end users and notes their requirements and concerns

b) Meets with the function heads and notes their requirements and concerns

c) Meets with management personnel and notes their requirements and concerns

d) Consolidates the requirements and presents them to select end users, function

heads, and management personnel and receives their feedback, if any

e) Implements the feedback and finalizes specifications

2) A ready set of user requirements is presented as part of a request for

proposal

3) A request for proposal points to a similar product and requests

replication with client-specific customization

 Regardless of the scenario, once the specifications are ready, quality

assurance steps in

 The role of quality assurance in this area is to ensure that the

specifications are exhaustive and cover all areas

 Including functionality, capacity, reliability, safety, security, intended

use, etc.

 The tools for building quality into specifications are as follows:

Process documentation - Details the methodology for gathering,

developing, analyzing, and finalizing the specifications

Standards and guidelines, formats, and templates - Specify the

minimum set of specifications that needs to be built in

Checklists - Help analysts to ensure comprehensiveness of the

specifications

 Design quality refers to how well the product or service to be

delivered is designed

 The objectives for design are to fulfill the specifications defined for

the product or service being provided

 Design determines the shape and strengths of the product or service

 Therefore, if the design is weak, the product or service will fail, even

if the specifications are very well defined

 Design can be split into two phases: conceptual design and engineering

 Conceptual design selects the approach to a solution from the multiple

approaches available

 Engineering uses the approach selected and works out the details to

realize the solution

 Conceptual design is the creative part of the process, and engineering is

the details part

 In terms of software, conceptual design refers to software architecture,

navigation, number of tiers, approaches to flexibility, portability,

maintainability, and so on

 Engineering design refers to database design, program specifications,

screen design, report design, etc.

 Software design normally contains the following elements:

1) Functionality design

2) Software architecture

3) Navigation

4) Database design

5) Development platform

6) Deployment platform

7) User interface design

8) Report design

9) Security

10) Fault tolerance

11) Capacity

12) Reliability

13) Maintainability

14) Efficiency and concurrence

15) Coupling and cohesion

16) Program specifications

17) Test design

 It is normal to conduct a brainstorming session at the beginning of a

software design project, to select one optimum design alternative and to

decide on the overall design aspects

 Such as the number of tiers, technology platform, software coupling

and cohesion, etc.

 A brainstorming session helps designers arrive at the best possible

solution for the project at hand

 Normally, software design is a two-step process:

Conceptual design - Referred to as high-level design, functional

design specification, software requirements specification, and

software architecture design

Engineering design - Referred to as low-level design, detailed

design specification, software design description, and software

program design

 The tools for building quality into design include the following:

Process documentation - Details the methodology for design

alternatives to be considered, criteria for selecting the alternative for

the project, and finalizing the conceptual design

Standards and guidelines, formats, and templates - Specify the

possible software architectures along with their attendant advantages

and disadvantages and so on

Checklists - Help designers to ensure that design is carried out

comprehensively and appropriately

The following activities form part of developing software:

Create the database and table structures

Develop dynamically linked libraries for common routines

Develop screens

Develop reports

Develop unit test plans

Develop associated process routines for all other aspects, such as

security, efficiency, fault tolerance, etc.

 Good-quality construction is achieved by adhering to the coding

guidelines of the programming language being used

 Normally there is a separate coding guideline for every programming

language used in an organization

 Coding guidelines contain naming conventions, code formatting that

help developers write reliable and defect-free code

 Of course, it is very important to have qualified people trained in

software development

 Construction follows software design, and it should always conform to

the design document

 In this way, good quality in construction can be achieved

 Quality is built in by adhering to the organizational standards for

code quality as well as the coding guidelines for the development

language being used

 Uncontrolled changes can wreak havoc with code quality

 Therefore, change management and configuration management

assume importance for ensuring code quality

 There are two techniques to ensure that quality is built into a product:

Reviews (walkthroughs)

Testing

 Conformance quality deals with how well an organization ensures that

quality is built into a product through the above three dimensions

 It is one thing to do a quality job

 But it is quite another to unearth any defects lurking in the work

product and ensure that a good-quality product is indeed built

 Essentially, conformance quality examines how well quality control is

carried out in the organization

 Ensuring that conformance quality is at desirable levels in the

organization is achieved through :

Audits

Quality measurements

Metrics

Benchmarking

 Defect removal efficiency of verification and validation activities, defect

injection rate, and defect density are all used for this purpose

 Audits also are conducted to ensure that projects conform to various

applicable standards for building quality into all activities, including

specifications and design

 In addition, organizational data is benchmarked against industry

benchmarks, and corrective or preventive actions are taken to ensure that

organizational conformance is indeed on a par with the industry

 Conformance quality is built in through process definition and continuous

improvement for all software development activities as well as quality

assurance

